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Ortho and Causal Closure as a Closure Operations
in the Causal Logic

W. Cegła1 and J. Florek2
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We investigate two different closure operations (ortho and causal closure) generated by
a causal structure. In the case of orthogonal sets bounded in time two closure operations
coincide and a lattice of double orthoclosed sets in this case is orthomodular.
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1. INTRODUCTION

The quantum logic approach to quantum mechanics needs orthomodularity
(Pták and Pulmannová, 1991). It was shown in (Cegła and Jadczyk, 1977; Mayet,
1995) that the orthomodular structure appears naturally in special relativity if
one defines the orthogonality relation as the space-like or light-like separation in
Minkowski space-time. The main result states that the family of double orthoclosed
sets (double cones) in Minkowski space forms a complete orthomodular lattice
(Cegła and Florek, 2005).

In the present paper we shall study an orthogonality space (Z,⊥) where
the orthogonality relation is generated by the distinguished family G of subsets
covering a space Z. Two points x, y in the space Z are orthogonal x ⊥ y if there
is no f ∈ G such that {x, y} ⊆ f .

In the first part of the paper we consider two operations A → A⊥ where
A⊥ is an orthogonal complement of A and A → D(A) where D(A) is a causal
closure of A (see Definition 2.1). It is shown that D(A) is a closure operation
for the complete lattice which is formed by the family of sets with the property
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A = D(A). We also consider the relations between two closure operations D(A)
and A⊥⊥.

In the second part we consider the family G given by the graphs of some
functions covering the space Z = R × X where R is the real line and X is an
arbitrary topological space. We say that a set S ⊆ R × X is bounded in time if
there exists a strip [t1, t2] × X containing S.

We prove that if S is an orthogonal set bounded in time then D(S) = S⊥⊥.
We also prove that ζb(Z,⊥) := {S⊥⊥ ⊆ Z : S is bounded in time} is an ortho-
modular lattice and the following equalities are satisfied ζb(Z,⊥ ) = {S⊥⊥ : S is
an orthogonal set bounded in time} = {D(S) : S is an orthogonal set bounded in
time}.

2. CAUSAL CLOSURE AND ORTHOCLOSURE GENERATED
BY A CAUSAL STRUCTURE

By a causal structure of a set Z we mean a non-empty family G of sets
covering the set Z. Every element f belonging to G is called a causal path. Let
us denote by β(z) := {f ∈ G : z ∈ f } the set of all paths containing z.

Definition 2.1. A point z ∈ Z is causally controlled by a set A if

∀
f ∈β(z)

f ∩ A �= ∅.

A causal closure of A is the set of all points causally controlled by A and is denoted
by D(A)

D(A) := {z ∈ Z : ∀
f ∈β(z)

f ∩ A �= ∅}.

An orthogonal complement of A is the set of all points orthogonal to A and is
denoted by A⊥

A⊥ := {z ∈ Z : ∀
f ∈β(z)

f ∩ A = ∅}.

It is easy to see the following implications:

f ∩ D(A) �= ∅ =⇒ f ∩ A �= ∅ , (2.1)

f ∩ A⊥ �= ∅ =⇒ f ∩ A = ∅ . (2.2)

Lemma 2.1. The map D : 2Z → 2Z has the following properties:

(i) A ⊆ D(A),
(ii) if A ⊆ B then D(A) ⊆ D(B),

(iii) D(A) = D(D(A)).
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Proof: From Definition 2.1, (i) and (ii) are obvious. It is enough to prove that
D(D(A)) ⊆ D(A). By implication (2.1) we have:

z ∈ D(D(A)) ⇔ ∀
f ∈β(z)

f ∩ D(A) �= ∅ ⇒ ∀
f ∈β(z)

f ∩ A �= ∅ ⇔ z ∈ D(A). �

The family of causally closed sets ζ (Z,D) := {A ⊆ Z : A = D(A)} forms
a complete lattice partially ordered by set-theoretical inclusion with l.u.b. and
g.l.b. given respectively by

∨
Ai = D(

⋃
Ai),

∧
Ai =

⋂
Ai .

It is well known (Birkhoff, 1967) that the orthogonal map ⊥: 2Z → 2Z has
the following properties:

A ⊆ A⊥⊥ = (A⊥)⊥,

if A ⊆ B then B⊥ ⊆ A⊥,

A ∩ A⊥ = ∅,

A⊥ = A⊥⊥⊥,

from which follows that ⊥⊥ is a closure operation (an orthoclosure).
The family of double orthoclosed sets ζ (Z,⊥) := {A ⊆ Z : A = A⊥⊥}

forms a complete ortholattice partially ordered by set theoretical inclusion with
l.u.b. and g.l.b. given respectively by

∨
Ai = (

⋃
Ai)

⊥⊥ ,
∧

Ai =
⋂

Ai .

Of course there are relations between two closure operations D and ⊥⊥.

Lemma 2.2. The maps D : 2Z → 2Z and ⊥: 2Z → 2Z have the following
properties:

(i) [D(A)]⊥ = A⊥ = D(A⊥),
(ii) D(A) ⊆ A⊥⊥.

Proof: (i) By Lemma 2.1 A⊥ ⊆ D(A⊥) and A ⊆ D(A) from which it follows
that [D(A)]⊥ ⊆ A⊥. Therefore it is enough to prove only D(A⊥) ⊆ [D(A)]⊥. By
implication (2.1) and (2.2) we have:

z ∈ D(A⊥) ⇔ ∀
f ∈β(z)

f ∩ A⊥ �= ∅ ⇒ ∀
f ∈β(z)

f ∩ D(A) = ∅ ⇔ z ∈ [D(A)]⊥ .

(ii) Because A ⊆ A⊥⊥ then D(A) ⊆ D(A⊥⊥) = A⊥⊥. �

Corollary 2.1. From the Lemma 2.1 and 2.2. we get the formula

A ⊆ D(A) ⊆ A⊥⊥ .
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The simplest figures illustrating the relations shall be given in the Example 1
in the Section 4.

3. THE EQUIVALENCE BETWEEN THE CAUSAL
CLOSURE AND ORTHOCLOSURE

From now on we shall use the causal structure introduced in (Cegła and
Florek, 2005).

Let Z = R × X be a topological product of the real line R and arbitrary
topological space X. We denote by p a canonical projection of R × X on R. Let
G be a family of sets given by the graphs of continuous functions f : R → X.

For a ∈ Z and A ⊆ R we define:

a− : = {
z ∈ Z : p(z) ≤ p(a) ∧ ∃

g∈β(z)
a ∈ g

}
,

a+ : = {
z ∈ Z : p(z) ≥ p(a) ∧ ∃

g∈β(z)
a ∈ g

}
,

A− : =
⋃

a∈A

a−,

A+ : =
⋃

a∈A

a+.

It is easy to see that A⊥ = {z ∈ Z : ∀
f ∈β(z)

f ∩ A = ∅} = (A+ ∪ A−)′, where

the prime symbol (′) means the set complement in Z.
For A ⊆ Z and f ∈ G we denote

〈f,A〉 := p(f ∩ A) = {p(z) ∈ R : z ∈ f ∩ A} .

Hence by the property of projection p we have

〈f,A⊥〉 = (〈f,A+〉 ∪ 〈f,A−〉)′ ,
where the prime symbol (′) means the set complement in R. Now we shall intro-
duce the restrictions for the family G. We assume that G satisfies the following
conditions:

(∗) ∀
x,y,z∈Z

(x ∈ y+ ∧ y ∈ z+ ⇒ x ∈ z+) ,

(∗∗) ∀
z∈Z

z+ \ {z} and z− \ {z} are open sets in R × X .

A set S ⊆ Z is an orthogonal set iff ∀
x,y∈S

x �= y, x ⊥ y.
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It was shown in (Cegła and Florek, 2005) that the above conditions (∗) and
(∗∗) give the following one:

(∗ ∗ ∗) every orthoclosed set A = A⊥⊥

is generated by a maximal orthogonal set
S ⊆ A as follows S⊥⊥ = A⊥⊥ ,

and by (Foulis and Randall, 1971) we have

(∗ ∗ ∗∗) the set ζ (Z,⊥) = {A ⊆ Z : A = A⊥⊥}
is complete orthomodular lattice .

The following results were obtained in (Cegła and Florek, 2005). If f ∈ G,
A ⊆ Z and f ∩ A = ∅ then:

(i) 〈f,A−〉 = ∅ or 〈f,A−〉 = R or 〈f,A−〉 = (−∞, s) where s =
sup〈f,A−〉,

(ii) 〈f,A+〉 = ∅ or 〈f,A+〉 = R or 〈f,A+〉 = (t,∞) where t = inf〈f,A+〉,
(iii) 〈f,A⊥〉 is closed and connected subset of R.

Lemma 3.1. If S is an orthogonal set bounded in time then

f ∩ S = ∅ ⇒ f ∩ S⊥ �= ∅ .

Proof: From the boundness in time we see immediately that

〈f, S+〉 �= R and 〈f, S−〉 �= R .

Let us the first assume that 〈f, S+〉 �= ∅ and 〈f, S−〉 �= ∅. Hence by (i) and
(ii) 〈f, S−〉 = (−∞, s) and 〈f, S+〉 = (t,∞). By the orthogonality of S

〈f, S+〉 ∩ 〈f, S−〉 = ∅ ,

hence s ≤ t and

〈f, S⊥〉 = (〈f, S+〉 ∪ 〈f, S−〉)′ = [s, t] �= ∅.

On the other hand if we assume that 〈f, S+〉 = ∅ or 〈f, S−〉 = ∅ then also
〈f, S⊥〉 = 〈f, S−〉′ �= ∅ or 〈f, S⊥〉 = 〈f, S+〉′ �= ∅. �

Theorem 3.1. If S is an orthogonal set bounded in time then

S⊥⊥ = D(S) .

Proof: It is enough to prove that S⊥⊥ ⊆ D(S). If z ∈ S⊥⊥ and z /∈ D(S) then
exists f ∈ β(z) such that f ∩ S = ∅ and f ∩ S⊥ = ∅. By Lemma 3.1. it is
impossible. �
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Lemma 3.2. Let P = [t1, t2] × X be a strip and B ⊆ P .
If S is the maximal orthogonal set in P ∩ B⊥⊥ then S⊥⊥ = B⊥⊥.

Proof: Let x ∈ B⊥⊥\(P ∩ B⊥⊥). There are two cases:

1. p(x) ≥ t2,
2. p(x) ≤ t1.

We shall examine the case 1. Because x /∈ B⊥ then exists g ∈ β(x) and y ∈ g

such that y ∈ B. Let z ∈ g and p(z) = t2 Because p(y) ≤ p(z) ≤ p(x) and
p(y), p(x) ∈ 〈f,B⊥⊥〉 so, by (iii) p(z) ∈ 〈f,B⊥⊥〉. Hence z ∈ B⊥⊥. Because
S is the maximal orthogonal set in P ∩ B⊥⊥ and z ∈ P ∩ B⊥⊥ we conclude that
there exists h ∈ β(z) such that h ∩ S �= ∅. Because z ∈ S+ and x ∈ z+ so by the
transitivity condtition (∗) x ∈ S+. So we proved that S is the maximal orthogonal
set in B⊥⊥. Using (∗ ∗ ∗) we have S⊥⊥ = B⊥⊥. �

Using Theorem 3.1 and Lemma 3.2 we are able to prove our main result.

Theorem 3.2. The set ζb(Z,⊥) := {S⊥⊥ : S is bounded in time} is an or-
thomodular lattice and ζb(Z,⊥) = {S⊥⊥ : S is an orthogonal set bounded in
time} = {D(S) : S is an orthogonal set bounded in time}.

Proof: From Lemma 3.2 and Theorem 3.1. we get the equality

ζb(Z,⊥) = {S⊥⊥ : S is an orthogonal set bounded in time}
= {D(S) : S is an orthogonal set bounded in time}.

Now we shall check the following properties:

(i) ζb(Z,⊥) is closed for the l.u.b.,
(ii) ζb(Z,⊥) is closed for the orthocomplementation,

(iii) ζb(Z,⊥) is closed for the g.l.b.

(i) Let S1, S2 are bounded in time sets such that S⊥⊥
1 = A, S⊥⊥

2 = B. It is
enough to prove that (S1 ∪ S2)⊥⊥ = (A ∪ B)⊥⊥. It is easy to see that

A = S⊥⊥
1 ⊆ (S1 ∪ S2)⊥⊥,

B = S⊥⊥
2 ⊆ (S1 ∪ S2)⊥⊥ .

From this we get (A ∪ B)⊥⊥ ⊆ (S1 ∪ S2)⊥⊥. The contrary relation is
obvious.

(ii) Let S be the orthogonal set bounded in time such that

S⊥⊥ = A.
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Let P = [t1, t2] × X be a strip such that S ⊆ P .
It is enough to prove that

(P ∩ A⊥)⊥⊥ = A⊥.

At first we shall prove that A⊥ ⊆ D(P ∩ A⊥).

Let x ∈ A⊥\(P ∩ A⊥). There are two cases:

1. p(x) ≥ t2,
2. p(x) ≤ t1.

We shall examine the case 1. Let f ∈ β(x), z ∈ f and p(z) = t2. We
shall see that z ∈ A⊥. If z /∈ A⊥ then there exists h ∈ β(z), h ∩ A �= ∅.
But D(S) = A (Theorem 3.1) then there exists w ∈ h ∩ S, but p(w) ≤
p(z) ≤ p(x) so z ∈ w+ and x ∈ z+. Hence by the transitivity condition
(∗) x ∈ w+. But w ∈ S ⊂ A so x /∈ A⊥ which contradicts the assump-
tion x ∈ A⊥ \ (P ∩ A⊥).

Hence we see that A⊥ ⊆ D(P ∩ A⊥) ⊆ (P ∩ A⊥)⊥⊥.
The contrary relation is obvious.

(iii) By the property of the orthogonality relation we have: A ∩ B ⊆
(A ∩ B)⊥⊥ ⊆ (A⊥ ∪ B⊥)⊥ ⊆ A⊥⊥ ∩ B⊥⊥. It is enough to see that if
A = A⊥⊥, B = B⊥⊥ then A ∩ B = (A⊥ ∪ B⊥)⊥ = [(A⊥ ∪ B⊥)⊥⊥]⊥

and use (i) and (ii).

At the end observe that by (i), (ii), (iii) and condition (∗ ∗ ∗∗) the set {S⊥⊥ : S

is bounded in time } is an orthomodular lattice. �

Remark 3.1. The set ζb(Z,⊥) is not σ -complete lattice (see Example 2).
If we consider the following family ζP (Z,⊥) := {S⊥⊥ : S ⊆ P } where P =

[t1, t2] × X is a fix strip then by Theorem 3.2 ζP (Z,⊥) is complete orthomodular
lattice.

4. THE EXAMPLES

We shall consider the space Z = Rt × R, where Rt = R (denotes the time)
and the causal structure is given by a family of functions G satisfying sharp
Lipschitz condition.

G = {f : Rt → R; |f (t1) − f (t2)| < |t1 − t2|} .

The family G satisfies the conditions (∗) and (∗∗) of Section 3. The following
figures illustrate the examples in two- dimensional Minkowski space-time.
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Fig. 1. A �= D(A) = A⊥⊥.

Example 4.1. In Fig. 1 the set A is an orthogonal set bounded in time and
D(A) = A⊥⊥. In Fig. 2 a set A as a hiperbola is an orthogonal set unbounded in
time, and D(A) �= A⊥⊥ = Z.

If we restrict our considerations to the set A ⊆ {(t, t); t ∈ [t1, t2]} then A is
orthogonol bounded in time and A = D(A) = A⊥⊥.

Example 4.2. Let A := {(t, t); t ∈ W } where W denotes the set of all rational
numbers.

It is not difficult to see that A = A⊥⊥ hence A = ∨
t∈W

{(t, t)}. Of course

A /∈ ζb(Z,⊥) and {(t, t)} ∈ ζb(Z,⊥) for any t ∈ R. So ζb(Z,⊥) is not σ -complete
lattice.

Fig. 2. A �= D(A) �= A⊥⊥ = Z.
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