Ortho and Causal Closure as a Closure Operations in the Causal Logic

W. Cegła1 and J. Florek2

Received September 8, 2004; accepted November 18, 2004

We investigate two different closure operations (ortho and causal closure) generated by a causal structure. In the case of orthogonal sets bounded in time two closure operations coincide and a lattice of double orthoclosed sets in this case is orthomodular.

KEY WORDS: quantum logic; orthogonality relation; orthomodularity.

1. INTRODUCTION

The quantum logic approach to quantum mechanics needs orthomodularity (Pták and Pulmannová, 1991). It was shown in (Cegła and Jadczyk, 1977; Mayet, 1995) that the orthomodular structure appears naturally in special relativity if one defines the orthogonality relation as the space-like or light-like separation in Minkowski space-time. The main result states that the family of double orthoclosed sets (double cones) in Minkowski space forms a complete orthomodular lattice (Cegła and Florek, 2005).

In the present paper we shall study an orthogonality space (Z, \perp) where the orthogonality relation is generated by the distinguished family *G* of subsets covering a space *Z*. Two points *x*, y in the space *Z* are *orthogonal* $x \perp y$ if there is no $f \in G$ such that $\{x, y\} \subset f$.

In the first part of the paper we consider two operations $A \rightarrow A^{\perp}$ where A^{\perp} is an *orthogonal complement* of *A* and $A \rightarrow D(A)$ where $D(A)$ is a *causal closure* of *A* (see Definition 2.1). It is shown that $D(A)$ is a closure operation for the complete lattice which is formed by the family of sets with the property

¹ Institute of Theoretical Physics, University of Wrocław Pl. Maxa Borna 9, 50-204 Wrocław, Poland.

² Institute of Mathematics, University of Economics, ul. Komandorska 118/120, 53–345 Wrocław, Poland. (jflorek@manager.ae.wroc.pl)

³To whom correspondence should be addressed at Institute of Theoretical Physics, University of Wrocław Pl. Maxa Borna 9, 50-204 Wrocław, Poland; e-mail: cegla@ift.uni.wroc.pl.

 $A = D(A)$. We also consider the relations between two closure operations $D(A)$ and $A^{\perp \perp}$.

In the second part we consider the family *G* given by the graphs of some functions covering the space $Z = \mathbb{R} \times X$ where \mathbb{R} is the real line and X is an arbitrary topological space. We say that a set $S \subseteq \mathbb{R} \times X$ is *bounded in time* if there exists a strip $[t_1, t_2] \times X$ containing *S*.

We prove that if *S* is an orthogonal set bounded in time then $D(S) = S^{\perp \perp}$. We also prove that $\zeta_b(Z, \perp) := \{ S^{\perp \perp} \subset Z : S \text{ is bounded in time} \}$ is an orthomodular lattice and the following equalities are satisfied $\zeta_b(Z, \perp) = \{S^{\perp \perp} : S \text{ is } S^{\perp} \}$ an orthogonal set bounded in time} = { $D(S)$: *S* is an orthogonal set bounded in time}.

2. CAUSAL CLOSURE AND ORTHOCLOSURE GENERATED BY A CAUSAL STRUCTURE

By a *causal structure* of a set *Z* we mean a non-empty family *G* of sets covering the set *Z*. Every element *f* belonging to *G* is called a *causal path*. Let us denote by $\beta(z) := \{f \in G : z \in f\}$ the set of all paths containing *z*.

Definition 2.1. A point $z \in Z$ is *causally controlled* by a set *A* if

$$
\bigvee_{f \in \beta(z)} f \cap A \neq \emptyset.
$$

A causal closure of *A* is the set of all points causally controlled by *A* and is denoted by $D(A)$

$$
D(A) := \{ z \in Z : \bigvee_{f \in \beta(z)} f \cap A \neq \emptyset \}.
$$

An orthogonal complement of *A* is the set of all points orthogonal to *A* and is denoted by A^{\perp}

$$
A^{\perp} := \{ z \in Z : \bigvee_{f \in \beta(z)} f \cap A = \emptyset \}.
$$

It is easy to see the following implications:

$$
f \cap D(A) \neq \emptyset \Longrightarrow f \cap A \neq \emptyset, \tag{2.1}
$$

$$
f \cap A^{\perp} \neq \emptyset \Longrightarrow f \cap A = \emptyset. \tag{2.2}
$$

Lemma 2.1. *The map* $D: 2^Z \rightarrow 2^Z$ *has the following properties:*

- (i) $A \subseteq D(A)$, (ii) *if* $A \subseteq B$ *then* $D(A) \subseteq D(B)$,
- (iii) $D(A) = D(D(A)).$

Proof: From Definition 2.1, *(i)* and *(ii)* are obvious. It is enough to prove that $D(D(A)) \subseteq D(A)$. By implication (2.1) we have:

$$
z \in D(D(A)) \Leftrightarrow \bigvee_{f \in \beta(z)} f \cap D(A) \neq \emptyset \Rightarrow \bigvee_{f \in \beta(z)} f \cap A \neq \emptyset \Leftrightarrow z \in D(A). \square
$$

The family of causally closed sets ζ (*Z*, *D*) := { $A \subseteq Z : A = D(A)$ } forms a complete lattice partially ordered by set-theoretical inclusion with l.u.b. and g.l.b. given respectively by

$$
\bigvee A_i = D(\bigcup A_i), \qquad \bigwedge A_i = \bigcap A_i.
$$

It is well known (Birkhoff, 1967) that the orthogonal map \perp : $2^Z \rightarrow 2^Z$ has the following properties:

$$
A \subseteq A^{\perp \perp} = (A^{\perp})^{\perp},
$$

if $A \subseteq B$ then $B^{\perp} \subseteq A^{\perp},$
 $A \cap A^{\perp} = \emptyset,$
 $A^{\perp} = A^{\perp \perp \perp},$

from which follows that ⊥⊥ is a closure operation (an *orthoclosure*).

The family of double orthoclosed sets $\zeta(Z, \perp) := \{A \subseteq Z : A = A^{\perp \perp}\}\$ forms a complete ortholattice partially ordered by set theoretical inclusion with l.u.b. and g.l.b. given respectively by

$$
\bigvee A_i = (\bigcup A_i)^{\perp \perp}, \qquad \bigwedge A_i = \bigcap A_i.
$$

Of course there are relations between two closure operations *D* and ⊥⊥.

Lemma 2.2. *The maps* $D: 2^Z \rightarrow 2^Z$ *and* $\perp : 2^Z \rightarrow 2^Z$ *have the following properties:*

(i)
$$
[D(A)]^{\perp} = A^{\perp} = D(A^{\perp}),
$$

(ii) $D(A) \subseteq A^{\perp \perp}.$

Proof: (i) By Lemma 2.1 $A^{\perp} \subset D(A^{\perp})$ and $A \subset D(A)$ from which it follows that $[D(A)]^{\perp} \subset A^{\perp}$. Therefore it is enough to prove only $D(A^{\perp}) \subset [D(A)]^{\perp}$. By implication (2.1) and (2.2) we have:

$$
z \in D(A^{\perp}) \Leftrightarrow \forall f \cap A^{\perp} \neq \emptyset \Rightarrow \forall f \cap D(A) = \emptyset \Leftrightarrow z \in [D(A)]^{\perp}.
$$

(ii) Because $A \subseteq A^{\perp\perp}$ then $D(A) \subseteq D(A^{\perp\perp}) = A^{\perp\perp}$.

Corollary 2.1. *From the Lemma 2.1 and 2.2. we get the formula*

$$
A\subseteq D(A)\subseteq A^{\perp\perp}.
$$

The simplest figures illustrating the relations shall be given in the Example 1 in the Section 4.

3. THE EQUIVALENCE BETWEEN THE CAUSAL CLOSURE AND ORTHOCLOSURE

From now on we shall use the causal structure introduced in (Cegła and Florek, 2005).

Let $Z = \mathbb{R} \times X$ be a topological product of the real line \mathbb{R} and arbitrary topological space *X*. We denote by *p* a canonical projection of $\mathbb{R} \times X$ on \mathbb{R} . Let *G* be a family of sets given by the graphs of continuous functions $f : \mathbb{R} \to X$.

For $a \in Z$ and $A \subseteq \mathbb{R}$ we define:

$$
a^- := \{ z \in Z : p(z) \le p(a) \land \exists_{g \in \beta(z)} a \in g \},
$$

\n
$$
a^+ := \{ z \in Z : p(z) \ge p(a) \land \exists_{g \in \beta(z)} a \in g \},
$$

\n
$$
A^- := \bigcup_{a \in A} a^-,
$$

\n
$$
A^+ := \bigcup_{a \in A} a^+.
$$

It is easy to see that $A^{\perp} = \{z \in Z : \bigvee_{f \in \beta(z)} f \cap A = \emptyset\} = (A^+ \cup A^-)'$, where the prime symbol () means the set complement in *Z*.

For $A \subseteq Z$ and $f \in G$ we denote

$$
\langle f, A \rangle := p(f \cap A) = \{ p(z) \in \mathbb{R} : z \in f \cap A \}.
$$

Hence by the property of projection *p* we have

$$
\langle f, A^{\perp} \rangle = (\langle f, A^{+} \rangle \cup \langle f, A^{-} \rangle)^{\prime},
$$

where the prime symbol (') means the set complement in $\mathbb R$. Now we shall introduce the restrictions for the family *G*. We assume that *G* satisfies the following conditions:

(*) \forall $(x \in y^+ \land y \in z^+ \Rightarrow x \in z^+),$ (**) \forall $z^+ \setminus \{z\}$ and $z^- \setminus \{z\}$ are open sets in $\mathbb{R} \times X$.

A set *S* \subseteq *Z* is an *orthogonal set* iff $\forall x, y \in S$ *x* $\neq y, x \perp y$.

It was shown in (Cegła and Florek, 2005) that the above conditions (∗) and (∗∗) give the following one:

(***) every orthogonal set
$$
A = A^{\perp \perp}
$$

is generated by a maximal orthogonal set
 $S \subseteq A$ as follows $S^{\perp \perp} = A^{\perp \perp}$,

and by (Foulis and Randall, 1971) we have

$$
(***) \t the set $\zeta(Z, \perp) = \{A \subseteq Z : A = A^{\perp \perp}\}\$
is complete orthonodular lattice.
$$

The following results were obtained in (Cegła and Florek, 2005). If $f \in G$, *A* ⊂ *Z* and f ∩ *A* = \emptyset then:

- (i) $\langle f, A^- \rangle = \emptyset$ or $\langle f, A^- \rangle = \mathbb{R}$ or $\langle f, A^- \rangle = (-\infty, s)$ where $s =$ $\sup\{f, A^{-}\},$
- (ii) $\langle f, A^+ \rangle = \emptyset$ or $\langle f, A^+ \rangle = \mathbb{R}$ or $\langle f, A^+ \rangle = (t, \infty)$ where $t = \inf \langle f, A^+ \rangle$,
- (iii) $\langle f, A^{\perp} \rangle$ is closed and connected subset of R.

Lemma 3.1. *If S is an orthogonal set bounded in time then*

$$
f \cap S = \emptyset \Rightarrow f \cap S^{\perp} \neq \emptyset.
$$

Proof: From the boundness in time we see immediately that

 $\langle f, S^+ \rangle \neq \mathbb{R}$ and $\langle f, S^- \rangle \neq \mathbb{R}$.

Let us the first assume that $\langle f, S^+ \rangle \neq \emptyset$ and $\langle f, S^- \rangle \neq \emptyset$. Hence by (i) and (ii) $\langle f, S^- \rangle = (-\infty, s)$ and $\langle f, S^+ \rangle = (t, \infty)$. By the orthogonality of *S*

$$
\langle f, S^+ \rangle \cap \langle f, S^- \rangle = \emptyset,
$$

hence $s \leq t$ and

$$
\langle f, S^{\perp} \rangle = (\langle f, S^{+} \rangle \cup \langle f, S^{-} \rangle)' = [s, t] \neq \emptyset.
$$

On the other hand if we assume that $\langle f, S^+\rangle = \emptyset$ or $\langle f, S^-\rangle = \emptyset$ then also $\langle f, S^{\perp} \rangle = \langle f, S^{-} \rangle' \neq \emptyset$ or $\langle f, S^{\perp} \rangle = \langle f, S^{+} \rangle' \neq \emptyset$.

Theorem 3.1. *If S is an orthogonal set bounded in time then*

$$
S^{\perp\perp} = D(S).
$$

Proof: It is enough to prove that $S^{\perp\perp} \subseteq D(S)$. If $z \in S^{\perp\perp}$ and $z \notin D(S)$ then exists $f \in \beta(z)$ such that $f \cap S = \emptyset$ and $f \cap S^{\perp} = \emptyset$. By Lemma 3.1. it is impossible.

16 Cegła and Florek

Lemma 3.2. *Let* $P = [t_1, t_2] \times X$ *be a strip and* $B \subseteq P$ *. If S* is the maximal orthogonal set in $P \cap B^{\perp\perp}$ then $S^{\perp\perp} = B^{\perp\perp}$.

Proof: Let $x \in B^{\perp\perp} \setminus (P \cap B^{\perp\perp})$. There are two cases:

- 1. $p(x) > t_2$,
- 2. $p(x) \le t_1$.

We shall examine the case 1. Because $x \notin B^{\perp}$ then exists $g \in \beta(x)$ and $y \in g$ such that $y \in B$. Let $z \in g$ and $p(z) = t_2$ Because $p(y) \leq p(z) \leq p(x)$ and $p(y)$, $p(x) \in \langle f, B^{\perp \perp} \rangle$ so, by (iii) $p(z) \in \langle f, B^{\perp \perp} \rangle$. Hence $z \in B^{\perp \perp}$. Because *S* is the maximal orthogonal set in $P \cap B^{\perp\perp}$ and $z \in P \cap B^{\perp\perp}$ we conclude that there exists $h \in \beta(z)$ such that $h \cap S \neq \emptyset$. Because $z \in S^+$ and $x \in z^+$ so by the transitivity condtition (*) $x \in S^+$. So we proved that *S* is the maximal orthogonal set in $B^{\perp\perp}$. Using (***) we have $S^{\perp\perp} = B^{\perp\perp}$.

Using Theorem 3.1 and Lemma 3.2 we are able to prove our main result.

Theorem 3.2. *The set* $\zeta_b(Z, \perp) := \{S^{\perp \perp} : S \text{ is bounded in time}\}$ is an or*thomodular lattice and* $\zeta_b(Z, \perp) = \{S^{\perp\perp} : S \text{ is an orthogonal set bounded in } \}$ $time$ } = { $D(S)$: *S is an orthogonal set bounded in time*}*.*

Proof: From Lemma 3.2 and Theorem 3.1. we get the equality

 $\zeta_b(Z, \perp) = \{S^{\perp \perp} : S \text{ is an orthogonal set bounded in time}\}\$ $= {D(S) : S \text{ is an orthogonal set bounded in time}}.$

Now we shall check the following properties:

- (i) $\zeta_b(Z, \perp)$ is closed for the l.u.b.,
- (ii) $\zeta_b(Z, \perp)$ is closed for the orthocomplementation,
- (iii) $\zeta_b(Z, \perp)$ is closed for the g.l.b.
	- (i) Let S_1 , S_2 are bounded in time sets such that $S_1^{\perp \perp} = A$, $S_2^{\perp \perp} = B$. It is enough to prove that $(S_1 \cup S_2)^{\perp \perp} = (A \cup B)^{\perp \perp}$. It is easy to see that

$$
A = S_1^{\perp \perp} \subseteq (S_1 \cup S_2)^{\perp \perp},
$$

$$
B=S_2^{\perp\perp}\subseteq (S_1\cup S_2)^{\perp\perp}.
$$

From this we get $(A \cup B)^{\perp \perp} \subseteq (S_1 \cup S_2)^{\perp \perp}$. The contrary relation is obvious.

(ii) Let *S* be the orthogonal set bounded in time such that

$$
S^{\perp \perp} = A.
$$

Let $P = [t_1, t_2] \times X$ be a strip such that $S \subseteq P$. It is enough to prove that

$$
(P \cap A^{\perp})^{\perp \perp} = A^{\perp}.
$$

At first we shall prove that $A^{\perp} \subset D(P \cap A^{\perp})$.

Let $x \in A^{\perp} \setminus (P \cap A^{\perp})$. There are two cases:

- 1. $p(x) > t_2$,
- 2. $p(x) \le t_1$.

We shall examine the case 1. Let $f \in \beta(x)$, $z \in f$ and $p(z) = t_2$. We shall see that $z \in A^{\perp}$. If $z \notin A^{\perp}$ then there exists $h \in \beta(z)$, $h \cap A \neq \emptyset$. But *D*(*S*) = *A* (Theorem 3.1) then there exists $w \in h \cap S$, but $p(w) \le$ $p(z) \leq p(x)$ so $z \in w^+$ and $x \in z^+$. Hence by the transitivity condition $(*) x ∈ w⁺$. But $w ∈ S ⊂ A$ so $x ∉ A[⊥]$ which contradicts the assumption $x \in A^{\perp} \setminus (P \cap A^{\perp})$.

Hence we see that $A^{\perp} \subseteq D(P \cap A^{\perp}) \subseteq (P \cap A^{\perp})^{\perp \perp}$. The contrary relation is obvious.

(iii) By the property of the orthogonality relation we have: $A \cap B \subseteq$ $(A \cap B)^{\perp \perp} \subseteq (A^{\perp} \cup B^{\perp})^{\perp} \subseteq A^{\perp \perp} \cap B^{\perp \perp}$. It is enough to see that if $A = A^{\perp \perp}, B = B^{\perp \perp}$ then $A \cap B = (A^{\perp} \cup B^{\perp})^{\perp} = [(A^{\perp} \cup B^{\perp})^{\perp \perp}]^{\perp}$ and use (i) and (ii).

At the end observe that by (i), (ii), (iii) and condition ($****$) the set { $S^{\perp\perp}$: *S* is bounded in time } is an orthomodular lattice.

Remark 3.1. The set $\zeta_b(Z, \perp)$ is not σ -complete lattice (see Example 2).

If we consider the following family $\zeta_P(Z, \perp) := \{S^{\perp \perp} : S \subseteq P\}$ where $P =$ $[t_1, t_2] \times X$ is a fix strip then by Theorem 3.2 $\zeta_P(Z, \perp)$ is complete orthomodular lattice.

4. THE EXAMPLES

We shall consider the space $Z = \mathbb{R}_t \times \mathbb{R}$, where $\mathbb{R}_t = \mathbb{R}$ (denotes the time) and the causal structure is given by a family of functions *G* satisfying sharp Lipschitz condition.

$$
G = \{f: \mathbb{R}_t \to \mathbb{R}; \ |f(t_1) - f(t_2)| < |t_1 - t_2|\}.
$$

The family *G* satisfies the conditions (∗) and (∗∗) of Section 3. The following figures illustrate the examples in two- dimensional Minkowski space-time.

Fig. 1. $A \neq D(A) = A^{\perp \perp}$.

Example 4.1. In Fig. 1 the set *A* is an orthogonal set bounded in time and $D(A) = A^{\perp \perp}$. In Fig. 2 a set *A* as a hiperbola is an orthogonal set unbounded in time, and $D(A) \neq A^{\perp \perp} = Z$.

If we restrict our considerations to the set $A \subseteq \{(t, t); t \in [t_1, t_2]\}$ then *A* is orthogonol bounded in time and $A = D(A) = A^{\perp \perp}$.

Example 4.2. Let $A := \{(t, t); t \in W\}$ where *W* denotes the set of all rational numbers.

It is not difficult to see that $A = A^{\perp \perp}$ hence $A = \bigvee$ *t*∈*W* $\{(t, t)\}\)$. Of course $A \notin \zeta_b(Z, \perp)$ and $\{(t, t)\}\in \zeta_b(Z, \perp)$ for any $t \in \mathbb{R}$. So $\zeta_b(Z, \perp)$ is not σ -complete lattice.

Fig. 2. $A \neq D(A) \neq A^{\perp \perp} = Z$.

REFERENCES

Birkhoff, G. (1967). *American Mathematical Society Colloquium Publication.* **25**. Cegla, W. and Florek, J. (2005). *Communication in Mathematical Physics*. Cegła, W. and Jadczyk, A. Z. (1977). *Communication in Mathematical Physics* **57**, 213. Foulis, D. J. and Randall, C. H. (1971). *Journal of Combinational Theory* **11**, 157, 595. Mayet, R. (1995). *International Journal of Theoretical Physics* **34**, 595. Pták, P. and Pulmannová S. (1991). In Fundamental Theories of Physics, Kluwer, Dordrecht.